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A novel metric termed cluster resolution is presented. This metric compares the separation of clusters of
data points while simultaneously considering the shapes of the clusters and their relative orientations.
Using cluster resolution in conjunction with an objective variable ranking metric allows for fully auto-
mated feature selection for the construction of chemometric models. The metric is based upon considering
eature selection
hemometrics
CA
NOVA
C–MS
asoline

the maximum size of confidence ellipses around clusters of points representing different classes of objects
that can be constructed without any overlap of the ellipses. For demonstration purposes we utilized PCA
to classify samples of gasoline based upon their octane rating. The entire GC–MS chromatogram of each
sample comprising over 2 × 106 variables was considered. As an example, automated ranking by ANOVA
was applied followed by a forward selection approach to choose variables for inclusion. This approach
can be generally applied to feature selection for a variety of applications and represents a significant step
towards the development of fully automated, objective construction of chemometric models.
. Introduction

There are many well-established chemometric techniques used
o facilitate the handling of chemical data: techniques such as prin-
ipal components analysis (PCA) and partial least-squares (PLS)
eing among the most common. This proliferation of chemometric
echniques can be attributed to several factors, including improve-

ents in computing technology and more user-friendly software
oupled with advancements in analytical instrumentation. Mod-
rn instrumental techniques, especially the families of hyphenated
eparations techniques (e.g.: GC–MS and LC–MS) and multidimen-
ional separations, tend to be data-rich and provide an abundance
f detail pertaining to the nature of a complex sample in a relatively
hort period of time. This in turn has permitted the analyst to probe
ncreasingly complex samples, and pose increasingly challenging
uestions, the answers to which are most easily revealed though
he use of chemometric tools. For example, grades of gasoline were
lassified based on their GC–MS profiles by Doble et al. using PCA
1]. Sandercock and Du Pasquer have used GC–MS coupled with PCA

o fingerprint a series of gasoline samples and identify the origin of
he samples [2–4].

Another field where chemometric techniques are widely
pplied is in metabolomics (as well as general metabolite profil-
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ing and metabonomics). Wilson et al. have recently reviewed the
application of LC–MS in this field, highlighting some uses of chemo-
metrics [5]. Other examples of the use of chemometrics in this
area include Bruce et al. who recently evaluated metabolite profil-
ing techniques and used PCA and orthogonal projections to latent
structures discriminant analysis (OPLS-DA) on UPLC–MS data [6].
Chemometric techniques have also been used in conjunction with
metabolic data for the prediction of gender [7], the early detection
of cancer [8], classification of tobacco extracts [9], and the study of
yeast metabolites [10,11].

When applying chemometric techniques to chromatographic or
chromatographic–mass spectrometric data, there are several pos-
sible approaches to preparing the data for analysis. Many users
employ integrated peak tables of data as this provides a matrix
that is relatively small and straightforward: analyte abundances
vs. sample numbers [1–4,7,12–14]. Other users choose to use a
non-integrated chromatographic signal for the construction of a
chemometric model [5,6,8,10,11,15–26]. With this approach, each
variable in the data matrix is the signal intensity at a given time.
This route has its own challenges, including increased data size and
data alignment; however, these can be overcome relatively easily
and this approach is in many cases superior to the use of inte-

grated peak tables. The advantage of using the entire raw data set is
more evident when one utilizes the entire GC–MS chromatogram,
either as a three-way array (scan number × m/z ratio × sample
number) or as a two-dimensional array of samples vs. GC–MS chro-
matograms unfolded along their time axis. Synovec and co-workers
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emonstrated the significant advantages can be achieved by using
he entire GC–MS chromatogram rather than extracted ion chro-

atograms or other univariate signals [22]. The reason for this
eing that the chemometric model can extract underlying patterns

n the data that are not evident in univariate signals.
One challenge that remains for all types of chemometric anal-

ses is that of feature selection: choosing which of the variables
hat have been collected will be included in the chemometric

odel. In cases where one is utilizing raw chromatographic data
r chromatographic–mass spectrometric data, feature selection
ecomes at the same time more challenging and more important
s millions of variables can be easily collected for each sample.
dataset comprising even a relatively small number of samples

uch as these will put inordinate demands on a computer sys-
em. Apart from the technological challenge, the most important
eason for careful variable selection is that not all variables will
e relevant. This is especially true when the entire chromatogram

s considered: only a small portion of the chromatographic space
ctually contains relevant signal intensities. If irrelevant variables
re included, the model must account for irrelevant variations
nd this will degrade its overall performance. Consequently,
areful variable selection is necessary, especially if raw chromato-
raphic signals are being used in the construction of the model
18,27].

There are multiple variable selection techniques that are avail-
ble, all with the goal of simplifying data sets and removing
xtraneous variables. Selection techniques such as using integrated
eak tables [13,14], extracted ion chromatograms [15,16] (EIC),
r single ion monitoring [19] (SIM) rely very highly on a pri-
ri knowledge and select variables by only permitting a small,
ser-selected portion of the data to be used. These are not inappro-
riate approaches, but they are potentially dangerous, especially

f the system is poorly understood. The reason being that in
hese cases there are numerous opportunities for either the inclu-
ion of significant quantities of irrelevant data or the inadvertent
xclusion of relevant portions of the data. Within the scope of
hromatography–MS data, total ion chromatograms (TICs) may also
e used for modeling [16,20], but this sacrifices essentially all of the
dditional mass spectral information and potentially useful vari-
bles in the process.

Objective variable ranking techniques are another option for
uiding feature selection. These methods use a calculated metric
o evaluate the potential value of each variable. When constructing
model, only those variables with scores above a certain thresh-
ld will be used. Examples of the use of objective variable ranking
pplied to chromatographic data include the work of Rajalahti et al.
here the discriminating variable (DIVA) test was used to rank vari-

bles for both PCA and PLS-DA of chromatographic profiles [21].
nother popular metric for variable ranking is Analysis of Variance

ANOVA) which has been used to guide feature selection for PCA
f GC–MS and GC × GC chromatograms [18,22,23]. Teófilo et al.
ave also used informative vectors as the ranking metric prior
o PLS analysis of spectroscopic data [24]. Apart from the inher-
nt advantage of objectivity, objective ranking strategies allow the
ser to consider many more candidate variables with no a pri-
ri information and can be readily incorporated into automated
outines.

Another approach to variable selection is the application of a
enetic algorithm (GA). The main advantage of GAs is that they
an proceed without much user intervention. However, they are
omputationally expensive, typically exhibit severe overfitting of

he data and/or converge to non-optimal solutions, especially with
ata sets that comprise a large number of variables. Strategies
o overcome these limitations have recently been presented by
allabo et al. [17]. However, GAs remain comparatively computa-
ionally inefficient. Additional feature selection approaches exist,
ta 83 (2011) 1079–1087

but within the scope of gas chromatography the above methods
are the most common.

It should also be noted that the challenge of feature selec-
tion is by no means limited to the field of chromatography, or
even chemistry. For example, uncorrelated linear discriminant
analysis (ULDA)-based feature selection has been applied to both
classification of cancer samples and biomarker discovery using
time-of-flight mass spectrometry (TOFMS) data [28], and in the
field of economics, multivariate discriminant analysis (MDA) was
employed to identify predictors of business failure [29]. Regard-
less of the variable selection technique that is applied, the goals
are to remove noise and irrelevant variables while preserving vari-
ables that are of value. For example, when techniques such as
ANOVA and DIVA are used to select variables to be included in
a PCA model, variables are ranked based on their relative ability
to discriminate between the classes of samples being considered.
Variables with a high ranking are likely to improve class separa-
tion, and those with a low ranking are deemed to be irrelevant. As
more variables are included, it is more likely that information use-
ful for class discrimination will be included in the model, though
each additional variable is likely to be less useful than the previous
ones [27]. However, with each new variable more noise is added
to the model, possibly reducing the model’s ability to discriminate
between classes. At some point, the addition of new variables will
result in an overall loss of model quality.

This highlights the central problem that we address in this
research. In cases where one is attempting to construct a chemo-
metric model of a large data set, how one objectively choose an
optimal combination of features to model the data? Further, how
can one quantify and thereby objectively compare the separation
and clustering of data points belonging to multiple classes in, for
example, a PCA model? This can be judged through visual inspec-
tion of various diagnostic plots of the model; however, in order to
achieve a fully automated and objective process for feature selec-
tion, an objective metric is required.

In this study we present such a metric. While metrics for the
degree of class separation have been used previously [19,23,25],
prior metrics do not account simultaneously for the shapes, sizes
and relative orientations of clusters of points on, for example, a PCA
scores plot. The metric that we have developed has been termed
cluster resolution and it considers these three parameters, repre-
senting a significant advancement over previous metrics. We also
compare the use of this metric and a metric based on Euclidean
distances in an algorithm to automatically construct a PCA model
for classifying a series of gasoline samples based upon their GC–MS
profiles. It must be noted that this metric may be used to com-
pare any two models where the separation between groups of
clusters needs to be evaluated. It can equally be applied to partial
least squares discriminant analysis or factor analysis, for example.
Additionally, the way in which variables are added is also flexible.
Here we demonstrate the approach with forward selection based
on ANOVA rankings as this is computationally trivial and straight-
forward, but informative vectors, DIVA, genetic algorithms, or any
other selection method could equally be used.

2. Experimental

To demonstrate cluster resolution and its use in automated
feature selection, a test set of gasoline samples was used. Three
gasoline samples having octane ratings of 87, 89, and 91 were

obtained from a single local gas station in Edmonton, Alberta,
Canada. The samples were diluted 20:1 (v/v) in pentane and ana-
lyzed by GC–MS. The GC–MS used for these experiments was
a 7890A GC with a 5975 quadrupole MS (Agilent Technologies,
Mississauga, ON) equipped with a 30 m × 250 �m; 0.25 �m HP-5
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olumn (Agilent). The carrier gas used was helium at constant flow
ate of 1.0 mL min−1. The injector was held constant at 250 ◦C and a
olume of 0.2 �L was injected with a split ratio of 100:1. The tem-
erature program was 50 ◦C (3.5 min hold) with a 20 ◦C min−1 ramp
o 300 ◦C. The total run time was 16 min. The initial solvent delay
as 2.5 min and mass spectra were collected from m/z 30 to m/z

00 at the rate of 9.2 spectra/s.
A total of 24 chromatograms were collected for each of the

asoline samples over a period of 2 weeks. The entire mass chro-
atogram for each analysis was exported as a .csv file, which was

hen imported into MATLAB 7.10.0 (The Mathworks, Natick, MA) as
7400 × 271 (scan number × m/z ratio) matrix using a lab-written
lgorithm. Data were then handled in MATLAB using lab-written
lgorithms. Chemometric models were constructed using PLS tool-
ox 5.2 (Eigenvector Research Inc., Wenatchee, WA).

. Theory

Cluster resolution is a metric that evaluates the distance
etween clusters of points, relative to their sizes. The metric may
e applied with any one of many combinations of feature selec-
ion and modeling approaches. In discussing the development of
he cluster resolution metric, we will use the example of PCA as
his is one of the most widely used techniques for data visualiza-
ion and exploration. Briefly, PCA projects multivariate data with a
igh dimensionality into a series of orthogonal subspaces, allow-

ng for quick and easy visualization and interpretation of highly
imensional data in a lower-dimensional subspace [30,31]. The first
rincipal component (PC) explains the most variance within the
ataset, and each subsequent component describes less and less
ariance.

While the number of PCs to include in the model is chosen by
he user, in practice data are often viewed as plots of scores on
ombinations of two or three PC axes. When PCA is performed on
dataset containing different classes of samples, each class will

deally cluster in a different region of the scores plot. The size of
ach cluster will depend on the degree of within-class variation
nd the distance between each cluster will depend on how well
he variability in the included features can describe the differences
etween the classes. In general it is desirable to have a model where
lasses are as far apart as possible on the scores plot, while samples
ithin each class cluster as tightly together as possible. As stated
reviously, the inclusion of additional relevant variables will drive
lusters farther apart, while the addition of less important variables
ill do little to increase the separation, but will render each cluster

f samples more diffuse. In order to automate the variable selec-
ion process, a calculable metric must be available that can account
or the distance between clusters, while considering their relative
rientations and sizes.

Metrics for the degree of between-class separation exist in the
iterature. One straightforward manner in which to measure the
eparation between classes is to compare the Euclidean distance
etween the centroids of a pair of classes, relative to square root of
he sum of the variance within each group [18,23]. Another met-
ic compares the sum of Mahalanobis distances between samples
elonging to each class and the centroid of the class with the sum of
ahalanobis distances between all samples and the model origin

19,32]. While these metrics do permit an estimate of between-
lass separation relative to the sizes of the clusters, they suffer from
he fact that they do not consider the shapes and orientations of

ach class. As demonstrated by Fig. 1, the relative orientation of a
air of ellipses can have a critical impact on whether they are sepa-
ated or not at a given confidence limit. While the clusters in Fig. 1A
re clearly separated in case of 75, 95 and 99% confidence limits, in
ig. 1B only the 75% confidence limits are separated, even though
Fig. 1. Two clusters of points with 75, 95 and 99% confidence ellipses. (A) Ellipses are
oriented parallel to each other, and (B) ellipses oriented such that they have some
overlap. The centroids of the ellipses and the sizes of the ellipses have not changed.

the centroids of these two clusters as well as variance within each
class were identical in both cases. In fact, to the metric based on
Euclidean distance measurements, these two cases have an identi-
cal test statistic. To the cluster resolution metric, the cases in Fig. 1
are easily distinguishable, demonstrating a more accurate measure
of class separation and a superior metric for automating the process
of variable selection.

Another advantage of cluster resolution over metrics such as
Euclidean or Mahalanobis distances is that cluster resolution is
bounded between 0 and 1. Consequently it is very easy to evalu-
ate the overall model quality when more than one class of samples
exists. This is achieved by simply taking the product of cluster res-
olutions for all pairings of ellipses. Additional terms in the product
of ellipses which are very well separated (cluster resolution >0.95)
will leave the overall model quality high, but even a single poor
resolution (e.g.: 0.45) will dominate the product term, indicating
overall poor model quality. This will be demonstrated with our
experimental data.

3.1. Calculation of cluster resolution

Cluster resolution is defined as the maximum confidence limit
at which confidence ellipses describing two different classes are

still separated. In cases where more than two classes exist, clus-
ter resolution is calculated for each pair of ellipses, and then the
product of these values is used to indicate overall model perfor-
mance. An algorithm has been developed in our group to reliably
and automatically determine that limit.
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Once a PCA model has been constructed, scores for each class
n a pair of PC axes are used for evaluating the models; here we
ill use PC1 and PC2. Considering only the data from a single class,

he scores for the points in the cluster provide new variables from
hich a 2-component PCA model is constructed without any data

caling. The resultant loading vectors for PCs 1 and 2 provide the
irections of the major and minor axes for the resulting confidence
llipse that describes this class. The eigenvalues, along with criti-
al Hotelling T2 value for a given confidence limit, the number of
amples in the class, and number of PCs describing the cluster (here
wo as we are using a two-dimensional confidence ellipse), provide
he lengths of each of the ellipse’s axes. This process is repeated for
ach cluster of points in the model.

To construct a confidence ellipse for a class, the covariance
atrix of scores is first calculated:

= 1
n − 1

X′X (1)

here S is the scores covariance matrix, n is the number of samples
n the cluster being evaluated, and X is a matrix where the rows
re the samples in a cluster and the columns are the scores of each
ample on PCs 1 and 2.

Singular Value Decomposition (SVD) is then performed on the
ovariance matrix:

= ULV′ (2)

here U and V′ are identical and provide loading vectors for the
odel describing the confidence ellipse, while L is a diagonal matrix

ontaining eigenvalues for components 1 and 2 of the new model.
he number of samples within the cluster permits the determina-
ion of the Hotelling T2 value for a given confidence limit [33]:

2 = p(n − 1)
n − p

F(˛, p, n − p) (3)

here p is number of components in a model (in this case 2), n is
he number of samples in the class, ˛ is the confidence limit and
(˛,p,n − p) is the F statistic for given values of ˛, p and n. The length
f each confidence ellipse axis (l) is given by Eq. (4).

=
√

T2 × L (4)

hen L is the eigenvalue for PC 1 the length of the major axis is
rovided, and when L is the eigenvalue of PC 2, the length of the
inor axis is provided. With both directions and lengths of the

xes describing ellipses at a given confidence limit calculated for
ach cluster of points, a set of approximately 1000 evenly spaced
oints are distributed along the circumference of each ellipse. This

s achieved by warping a circle comprising 100 000 points until it
s superimposable on the confidence ellipse. To reduce the number
f points in the ellipse, its circumference is calculated using Raj-
anujan’s approximation [34] and divided by 1000 to yield the

istance between two adjacent points, d. Then, beginning at an
rbitrary point on the circumference of the ellipse, the algorithm
roceeds along the ellipse until a point a distance d along the ellipse

s found. Points between the starting point and this second point
re discarded. This process is repeated around the entire ellipse
ith the result being an ellipse with about 1000 points distributed

venly along its circumference. The choice of 1000 points was made
ecause it provides a balance between accurate representation of
he ellipses and computational speed/requirements.

To determine if two confidence ellipses overlap at a given con-
dence level, the Euclidean distances between all points on one

llipse and those on a second ellipse are calculated. The minimum
f these distances (Dmin) is compared to half the sum of the dis-
ances between two neighbouring points on the circumferences of
ach ellipse (Dcritical). If the minimum distance, Dmin, is less than the
ritical distance, Dcritical, the two ellipses are deemed to overlap.
ta 83 (2011) 1079–1087

To determine the maximum confidence limit at which ellipses
will not overlap, the algorithm begins with an arbitrary confidence
limit (in this work we chose to use 75%) and determines if there
is any overlap. If overlap is detected, the algorithm decreases the
confidence limit for both ellipses in a stepwise fashion until overlap
is no longer detected. Conversely, if there is no overlap detected,
the algorithm increases the confidence limits of the two ellipses
until overlap is detected. The highest confidence limit at which
there is no overlap detected is defined as the cluster resolution for a
given pair of classes. Cluster resolution is calculated for each pair of
classes separately and has values above 0 and below 1 (representing
0 and 100% confidence ellipses).

During feature selection, variables are added to the model in
a forward-selection process. The first time that cluster resolution
is determined; the algorithm begins from the arbitrary confidence
limit (75%). However, after the first iteration, the cluster resolution
for each pair of clusters is stored and used as the starting point for
subsequent iterations with additional variables.

3.2. Application of cluster resolution in automated variable
selection

The initial step in automated variable selection is to rank the
variables according to some metric, for example ANOVA or DIVA.
The choice of ranking metric for the purpose of demonstrating the
application of cluster resolution is arbitrary, though it should be
noted that in our work we have observed that different ranking
metrics produce different models exhibiting maximal cluster res-
olution. A comparison of ranking methods is beyond the scope of
the present discussion, but is a topic for future study. Here we used
ANOVA, which has been described and demonstrated previously
[18,22,23,26], as it is computationally inexpensive and straightfor-
ward. The two main limitations in using ANOVA are that it assumes
that the observed variance is normally distributed, and that when
used on a data set where the number of variables vastly exceeds the
number of samples (such as will be the case whenever raw chro-
matographic data are subjected to ANOVA) it is entirely possible
for ANOVA to find features that can discriminate between classes
based upon random fluctuations in the data as opposed to meaning-
ful variances. A thorough discussion of these limitations is beyond
the scope of this paper, though the easiest manner for one guard
against these problems is to use a large training set and to perform
a cross-validation of the results with another data set.

Briefly, the output of ANOVA is a series of F ratios for each
variable. The F ratio is a measure of the ratio of between-class vari-
ance to within-class variance. If a variable has an elevated F ratio,
then it is deemed to be more valuable for describing the difference
between classes. With the F ratio calculated for every data point in
the chromatogram, the variables are ranked in order of decreasing
F ratio. A PCA model is then constructed using a fraction of variables
that have the highest F ratio. In principle any number of PCs could
be used, though for the sake of computational speed, it is best to
use as few components as possible. For this proof-of-concept work,
a two-component model was used.

Once a model is constructed, each class of sample will occupy
a given region on the scores plot, and a confidence ellipse can be
described around each cluster. The cluster resolution between each
pair of classes is then calculated. This process is repeated, includ-
ing more and more variables until the desired endpoint is reached,
using the previously determined cluster resolution for each pair of
classes as the starting point for evaluating the cluster resolution

with additional variables. The endpoint may be the number of vari-
ables where the resolution is maximized (such as when the critical
pair of classes shows the highest cluster resolution or when product
of all cluster resolutions for all class pairs is maximized), or it may
be when the minimum resolution is greater than a threshold value,
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ig. 2. Resolution of gasoline clusters as a function of the number of variables used
egion from 0 to 100 000 included variables; (C) full resolution plot from 0 to 2 000

or example 0.95 (meaning that no confidence ellipses exhibit over-
ap at the 95% confidence level). Herein we look to maximize the
oorest resolution and product of resolutions.

. Results and discussion

Presented here is the proof-of-concept for a novel metric that
e term cluster resolution. While the purpose of the metric is

he objective evaluation of the separation between clusters of
oints, it can be used to automate the feature selection process and
ompare similar chemometric models in an objective manner. As a
emonstration, we have used cluster resolution in an algorithm to
utomatically select the features in the data which can be used to
onstruct the PCA model having the greatest degree of separation
etween clusters for each class. In our example, the data comprise
2 GC–MS chromatograms of gasolines having three different
ctane ratings. The 72 chromatograms were randomly split into a
raining set (containing 16 chromatograms from each class) and
test set (containing the remaining 8 chromatograms from each

lass). This was repeated four times to use a total of five different
andomly chosen training and test sets to evaluate the stability of
he solution to minor variations in the training data. Finally the
rocedure was performed on the complete set of data with no
est set.

For data alignment, chromatograms were aligned using a home-
ade alignment function based upon the piecewise alignment

lgorithm developed by Synovec and co-workers [35], with an addi-
ional mass spectral confirmation of features to be matched, though

n principle any alignment algorithm could be used. The target to

hich data were aligned was a composite chromatogram of a series
f aligned gasoline samples of different octane ratings. This ensured
hat all components present in the samples were present in the
lignment target, though not necessarily at the same abundances.
t 1. (A) Close up of the region from 0 to 5000 included variables; (B) close up of the
cluded variables.

The aligned matrices were then unfolded along the time axis to
yield a series of vectors. ANOVA was applied to the set of 48 chro-
matograms in the each training set using a lab-written algorithm.
For each set, this yielded a vector of F ratios that was used to rank the
features. The test data sets were aligned as well, but were not used
in calculation of F ratios. Baseline correction was not necessary as
the ANOVA process automatically down-weights background ions
which do not vary significantly from sample to sample.

With variables now ranked by their F ratios, the data in the
training sets were autoscaled and subsets of data containing all
rows (samples) and the desired number of columns (features) were
extracted and used to construct a two-component PCA model. The
cluster resolution between each possible pairing of classes on the
scores plot for PC1 vs. PC2 was then calculated on the basis of the
training data set. This step was repeated sequentially, adding more
and more variables at each step to find the optimal number of
variables to include in the PCA model for each training set.

The original training data set comprised a matrix with 48 rows
(representing samples), and 2 005 400 columns (representing vari-
ables). In each case, the maximum number of variables to be
included was limited to 100 000. In one case calculations were
performed to include up to the entire set of 2 × 106 variables to
demonstrate the problem with utilizing the entire raw data file,
especially when it is incredibly sparse (Fig. 2C). In terms of com-
putational time, it may take a few minutes to calculate the initial
cluster resolution, depending on the data and the step size used for
changing the confidence limits as the algorithm must “walk” from
the arbitrary value. However, as the resolutions that are found in
an iteration are used as the starting points for the subsequent iter-

ation, the speed is limited by how fast variables can be extracted
from a dataset and the PCA model is constructed. In practice this
is about two seconds per step. In order to efficiently determine the
optimal number of variables to use, a large step size can be used in
the first pass through the data to find the approximate location of
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ig. 3. Scores plots for selected PCA models. Dark grey triangles represent 87-octa
1-octane gasoline. Filled markers represent samples used for feature selection an
5% confidence ellipses indicated for each class. A, B, C, D, and E show plots for 100

he optimum. Then progressively smaller step sizes can be used in
he vicinity of the optimum to locate its exact position. Additionally,
maller step sizes must be used as the confidence limit approaches
00% as a relatively small change in confidence limit will result in

arge change in the size of the confidence ellipses.
Fig. 2 depicts the results of the optimization process for the

rst of the five sets of data. The cluster resolution between pairs of
llipses is plotted on the y-axis vs. the number of features that are
ncluded in the model. It is apparent from Fig. 2 that with few vari-
bles it is relatively easy to model the differences between 87- and

9-octane gasolines and 87- and 91-octane gasolines. Conversely,

t is difficult to distinguish between 89- and 91-octane gasolines,
hich represent the critical pair of clusters in this case. This fig-
re also highlights the advantage of using a metric that is bounded
etween 0 and 1. Overall model quality is assessed by taking the
soline, black circles represent 89-octane gasoline and light grey squares represent
el construction. Hollow markers represent test data to which model was applied.

5, 2761, 5000, and 100 000 included variables, respectively.

product of individual cluster resolutions. In Fig. 2, it is apparent that
at a low number of included variables, 89- and 91-octane gasolines
are not separated, a fact that is accurately reflected by the product
of individual cluster resolutions.

As the number of variables increases, the separation between
89- and 91-octane gasolines shows marked improvement, with 95%
confidence ellipses becoming separated when 1945 variables are
used and reaching a maximum at 2761 variables. As this pair of
clusters was always limiting the quality of the model, the opti-
mal number of features was determined based on the resolution

of this pair. Investigating the trend in resolutions past this opti-
mum, a gradual decrease in the resolution for the critical pair is
observed until about 20 000 variables (Fig. 2B). Fig. 2C demonstrates
the extreme degradation in resolution that is observed when all
variables are considered in the model.
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Table 1
Numbers of variables identified as optimum for a given set using a given metric as well as false positive and false negative rates.

Set Cluster resolution Euclidian distance

Critical pair Product Critical pair Product

n FP FN n FP FN n FP FN n FP FN

1 2761 0 1 2761 0 1 29 900 8 3 97 600 12 2
2 2461 0 1 2461 0 1 9300 0 4 66 600 8 2
3 2265 0 1 2265 0 1 24 900 0 1 56 800 10 0
4 2985 0 1 2657 0 2 31 800 12 2 98 400 16 2
5 3189 0 2 3194 0 2 31 100 6 10 92 600 12 11

Average 2732 ± 376 2668 ± 350 25 400 ± 9400 82 400 ± 19 300
All train 2027 2027 22 900 62 000
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saturated hydrocarbon having eight carbons, possibly 4-methyl
heptane. Inspection of the chromatographic data shows that these
features are in fact due to a compound which has a relatively high
concentration in the 87- and 89-octane gasoline samples and a rel-
atively low concentration in the 91-octane gasoline. This indicates

Fig. 4. Features in data having the highest 2500 F ratios. These features were auto-
matically selected by the data for providing maximal overall cluster resolution.
Features have been re-wrapped to indicate the two compounds (toluene and an
alkane) in the samples that are used for distinguishing between octane ratings. Fea-
P – false positive. Samples in the test set that do not fall within 95% confidence ellip
llipse of at least one other class. n – number of variables at optimum. All Train – nu

Fig. 3 depicts the scores plots from the 2-component PCA mod-
ls constructed using different numbers of variables to highlight
egions in Fig. 2. As predicted by the plot in Fig. 2A, a 1000-variable
odel does not include sufficient features to separate all of the

lasses and should show overlap of the 89- and 91-octane gasoline
amples, while the 87-octane gasoline should be well separated
rom the other two. The model constructed using 1945 variables
hould show that all ellipses are just separated at the 95% confi-
ence level, and the model that is constructed using 2761 variables
Fig. 3C) exhibits the best overall resolution between the three
lasses. The inclusion of additional variables (e.g. the 5000-variable
odel shown in Fig. 3D) decreases the resolution. In the extreme

ase when far too many variables are included (100 000, Fig. 3E) the
uality of the model is highly degraded, with all ellipses exhibiting
ignificant overlap.

The model constructed using the optimum number of points
rom the training set, as seen in Fig. 3C, was able to correctly clas-
ify the samples in the test set. Similar results have been observed
or other sets, as summarized in Table 1. Additionally, when dif-
erent training sets were selected from the original data set, there
as very little difference in the number of variables required to

each the optimum. Moreover, the optimum that is indicated by
he least-separated class is identical (or nearly identical) to the opti-

um determined from the product of the resolutions between all
airings, and in both cases very low error rates are seen at the 95%
onfidence level (Table 1).

Once important variables have been identified, their positions
n the original data can be identified and a binary mask may be
enerated to visualize the relevant chromatographic information.
n the mask, included variables are assigned a value of one and
xcluded variables are assigned a value of zero. Applying this mask
o a chromatogram will only permit the relevant variables to be
een. A mask for the variables included at maximal cluster resolu-
ion is presented in Fig. 4. To visualize the order in which variables
ere added to the model, the mask has been colour-coded accord-

ng to F ratio. Variables with a high F ratio are coloured red, variables
ith a relatively low F ratio are coloured green, and variables which

re ignored are white. As can be seen, there are two coeluting com-
ounds which are used to discriminate between the three classes
f gasoline. Investigation of the raw GC–MS data indicate that the
ompound responsible for the ions coloured red (ions 91, 78, 65,
2, 39) is toluene. These variables are added first, and as can be
een in Fig. 2A, it is relatively easy to distinguish between 87- and
9-octane and 87- and 91-octane gasoline but difficult to distin-

uish between 89- and 91-octane gasolines. This is indeed what is
bserved in the GC–MS data. The 89- and 91-octane gasolines have
imilarly high concentrations of toluene and other aromatics while
he concentrations of these compounds are relatively low in the
7-octane gasoline.
heir class. FN – false negative. Samples in the test set that fall inside 95% confidence
s of variables at optimum of a set that includes all data.

The second compound that was included by the algorithm, indi-
cated by the mostly green points that elute slightly before toluene
(ions 43, 57, 71, 85, 99) is a hydrocarbon that coelutes with toluene.
Based on the mass spectrum of the compound it is a branched,
tures have been colour-coded according to F ratio. Red points are high F ratio and
considered first by the feature selection routine used here, green points are lower F
ratios and thus considered after the red points. Ignored variables are white. A repre-
sents an entire chromatogram worth of data; B is a close up of the region containing
the features of interest. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of the article.)
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ig. 5. Degree of separation vs. number of variables when calculated using a Euclide
A) Close up of the region from 0 to 5000 included variables; (B) close up of the reg
umber of variables found in A.

hat the model is automatically identifying features in the data that
ave an actual chemical origin. Furthermore, it shows the power of
sing the raw chromatographic data over integrated peak tables.

f integrated peak areas were used, it is very likely that this com-
ound would not have been observed due to the coelution with the
uch larger toluene peak.
The other observation is that a further data preprocessing step

ould ideally be implemented reduce the number of ions consid-
red for the model. Here, ∼2500 variables were used to describe
ssentially two chromatographic peaks. Incorporating the ability
o reduce this number of variables to a handful of important ions
icked out of key locations in the data is the focus of ongoing
fforts.

The cluster resolution metric was compared to a previously
escribed metric based on the Euclidean distance between the cen-
roids of pairs of classes, relative to the square root of the sum of
he variance within each group [18,23]. Fig. 5A and B show the
egree of class separation calculated based on the Euclidean dis-
ance metric for each set of classes, as well as the product of class
eparations (which has been suggested as a parameter for optimiz-
ng overall class separation), using the same test data (Set 1). When
he least-separated pair of classes is considered, the optimal sepa-
ation was observed at 29 900 variables. A visual inspection of the
cores plot in Fig. 5C and the one created using the optimum num-
er of variables predicted by the algorithm using cluster resolution

Fig. 3C) shows that the cluster resolution metric provides a model
ith a significantly more distinct class separation. When product

f class separations is considered, the optimum is found to be at
7 600 variables and the model performs similar to the case shown

n Fig. 3E (i.e. it fails almost entirely).
stance approach as well as the product of degree of separation for the three classes.
om 0 to 100 000 included variables; (C) scores plot from PCA model using optimal

Table 1 shows optimal numbers of variables for both metrics for
all sets using both the critical pair of classes and the product of all
cluster resolutions as the optimization parameter. It additionally
indicates the false positive and false negative rates for each train-
ing set. It is evident that the cluster resolution metric is far more
stable and that the optimum numbers of variables indicated by this
metric produces significantly improved models that the Euclidean
distance metric.

Additionally, when the two metrics are compared using all 72
chromatograms to train the model, the cluster resolution met-
ric provides its optimum at approximately the same location
(2027 variables vs. the average of 2732 variables). Conversely, the
Euclidean distance metric reaches its optimum at 25 400 variables,
which is clearly too many. When the product of class separations
is considered, the ED metric suggests 62 000, over an order of mag-
nitude more than the optimum found using the cluster resolution
metric. The reason for this difference is that the new metric con-
siders simultaneously the shapes, sizes, and relative alignments of
clusters and is scaled between 0 and 1, so the determining factor
will be the resolution of the critical pair of ellipses.

5. Conclusions

The cluster resolution metric presented herein provides a means
by which the degree of separation between classes of samples

can be objectively and automatically quantified in a manner that
accounts for the sizes, positions, and relative alignments of the
clusters. Additionally, the metric is bounded between 0 and 1, pro-
viding a definite advantage for considering overall model quality
when more than two clusters of points are considered. This is a
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ignificant step forward in the development of automated feature
election and automated chemometric model development rou-
ines. A manner in which this metric can be incorporated into a
outine to guide feature selection has also been presented. This
etric and general approach to variable selection can in principle

e applied to numerous combinations of chemometric models and
eature ranking/selection approaches.

Though demonstrated here as a calculation of two-dimensional
llipses on a two-dimensional plane, it is conceivable that the
pproach can be extended for use in considering the separation
etween clusters in higher-dimensional spaces. Finally, it should
e noted that the analyst must consider the limitations arising from
he data or feature ranking technique used when employing cluster
esolution to automate feature selection. Splitting data into test sets
nd training sets for cross-validation is, as always, recommended.
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